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Abstract 

We study the production of massive scalar particles (with m < H,) in inflationary 
Universe models. A given mode of the scalar field is quantum-mechanically excited when 
it is well within the Hubble radius (E H;‘) during the de Sitter phase of inflation. It, 
then crosses outside the Hubble radius after which it, is treated classically. Ultimately, 
long after reentering the Hubble ra,dius, the fluctuations correspond to non-relativistic 
scalar particles. The energy density in t,hese particles depends on the Hubble parameter 
during inflation, the mass of the particle species, and the coupling of the scalar field to 
the curvature scalar. The energy density may contribute significantly to the total energy 
density in the Universe; in addition, new constraints to the value of the Hubble constant 
during inflation follow. As an example we apply our results to axions. 
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I. Introduction 

For some time now, the study of quantum fields in cosmological models has been the 

focus of active and fruitful research. (For a comprehensive review of quantum fields in 

curved space, see ref. 1.) The suggestion by Guth ‘, and later Linde 3 and Albrecht and 

Steinhardt 4, that an inflationary Universe might solve a number of the puzzles which 

plague the standard big bang cosmology, has lead to the belief that a de Sitter phase in 

the early Universe can arise quite naturally and may even be expected 5. However, this 

yet to be an established fact! A period of inflation would have a profound effect on the 

quantum fields present and these quantum fields may be the progenitors of classical entities 

such as density inhomogeneities, particles, and perhaps primordial magnetic fields 6. For 

example, it has been shown that fluctuations in the sca1a.r field which drives inflation 

give rise to (almost) scale-free adia,batic density perturba.tions ‘. Fluctuations in other 

fields (e.g., the axion) can give rise to isothermal density perturbations s. Both adiabatic 

and isothermal density perturbations are candidates for the seed fluctuations necessary 

to initiate galaxy formation. Furthermore, a number of authors have looked at particle 

production for higher spin fields. In particular, graviton production leads to a definite 

spectrum of relic gravitational waves and to large angular scale (quadrupole) distortions 

in the microwave background temperature with 6T/T 21 ko/mp( where H, is the Hubble 

parameter during inflation ‘. The requirement that these distortions be consistent with the 

present limits to the isotropy of the microwave background provides a stringent constraint 

to the value of the Hubble parameter during inflation. In short, in an inflationary Universe 

model, quantum processes operating early on have profound implications for phenomena 

on large-scales today. The crucial aspect of inflation that makes this possible i’s the kinetic 

fact that sub Hubble radius sized fluctuations grow to enormous size (> Hubble radius) 

during infla,tion. 

Much of the work on quantum fields in curved space has focused on sca,lar fields. The 

effects of the gravitational field on a scalar field are often studied by solving the Klein- 

Gordon equation in a fixed background spacetime. One then determines whether the 

ener& density in particles produced is cosmologically interesting. For example, a number 

of authors have studied scalar fields in anisotropic ” and inhomogeneous spacetimes ” 

and find that gravitational production of these scalar particles can efficiently isotropize the 

Universe. More recently, Ford I2 ha,s studied the production of scalar pa.rticles due to the 

time dependence of the scalar curvature during the transition from a de Sit,ter phase to a 

radiation-dominated Robertson-Walker pha,se. He finds tha,t particles a,re produced with 

an energy densit,? corresponding to a thermal bath at t,he Gil,l)olis~Hau;l;ing tempera,ture, 

T = Ho/b, provided that the particles a.re not conformally coupled and the tra,nsition 
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from the de Sitter phase to the radiation-dominated phase is not too abrupt. He suggests 

that this particle production mechanism may be responsible for reheating the Universe 

after an inflationary epoch in contrast to the usual picture where reheating is due to the 

decay of the inflaton field (the scalar field responsible for inflation itself). 

In this paper, we will be concerned with the gravitational production of massive scalar 

particles in inflationary Universe models. [0 ur analysis is restricted to masses < Hubble 

constant during inflation; i.e., massive, but light in the context of inflation.] A given 

Fourier mode of a scalar field is quantum-mechanically excited when its wavelength is 

well inside the horizon. The mode crosses outside the horizon where it is then treated 

classically, i.e., ‘freezes in’ as a classical fluctuation. The mode begins to behave as non- 

relativistic matter during either the reheating, radiation-dominated, or matter-dominated 

phases which follow inflation. We sum the contributions from all modes and compute the 

energy densit,y today in these massive scalar particles. The final result depends on the 

mass of the particle. it,s coupling to gravity, and on the energy scales for inflation and 

reheating. We find that for a, wide range of these parameters. the energy densit,y in the 

pxticles produced ma,y significantly contribute to the t,otal energy density of the Universe. 

The outline of the paper is as follows: In Section II, we give preliminary calculations 

relevant for the general case. In Sections III a,nd IV we compute the total energy density 

in $-particles for particular choices of t, the coupling of the field to the curvature scalar. 

minimal coupling (6 = 0), and arbitrary 5. Finally, in Section V we apply our results 

to the axion, a particle whose mass is temperature and t,herefore time-dependent. 

II. Preliminary Calculations 

We consider a massive scalar field coupled to gravity in a, spatially fla,t Friedmann- 

Robertson-Walker (FRW) cosmology. The line element can be writkn a,s 

dsz = i 

-dt2 + a’(t)(d.r* + dy3 + d?) 
a*(~)(-d$ + d.2 + dy2 + dz’) (2.1) 

where t (~7) is the clock (conformal) time and a(t) is the cosmic SC& factor. In what 

follows, dot (prime) will denote the derixxtive with respect to clocl~ (conformal) time. 

Comoving scales (those measured by (z, y, z)) are related to physical s&es by: (physica. 

scale) = a(t) x (comoving scale). The cosmic, scale factor a(t) is normalized so that today, 

(physics,1 scale) = (comoving scale). We use the system of units in which k~ = c = tL = 1 

and G = m;,’ where mPl = 1.2 x 10lgGeT,’ is the planck mass. Throughout wc describe 

t,he stress energy of the Universe by a perfect fluid with a,11 equa,tion of st.atc 1, = -,ptot 

where pto, is the total energy density of t,he Universe: it follows that ,lIar x CL-~(~+?). 

The Hubble radius or ‘physics horizon’: H-’ x CL~(~+-~)/‘: det ermines the scale over which 
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coherent microphysical processes can operate. Today, H = 100 h km see-’ Mpc-’ and 

H-’ = 3000h-‘Mpc (h x 0.4 - 1.0). [F or b revity, we refer to the Hubble radius, H-l, as 

the horizon, although this, of course, is not technically correct.] 

We assume that the scalar field is weakly-interacting so that its couplings to itself and 

to other fields can be, for our purposes, ignored (and in this limit the $-particle is stable). 

The Lagrangian for the field is 

L = -k [q&bard + rn’$?? + &q 

where R = 6 (ii/a + (&/a)*) = 6a”/a3 is the scalar curvature and the parameter t specifies 

the coupling of the particle to gravity. In the present discussion, we take the mass, m, of 

the d-field to be constant. The classical equation of motion for the field is 

4 + 33 - $v’++ + m2,$ + Q&f, = ,, 

or equivalently, in conformal coordinates, 

cd” + (aW - V*) w + (t - l/6) CL’RW = 0 (2.3b) 

where w = ad. In conformal coordinates it is clear that for t < l/6, the gravitational 

coupling results in a negative mass-squared proportional to R. This negative mass-squared 

is responsible for the instability which lea,ds to the scalar particle production we will discuss. 

[The equation of motion for the graviton is identical and <graviton = 0.1 In a later section, 

we will consider a specific example of a particle whose mass is not constant: the asion. 

Let us review some important aspects of inflations. Inflation occurs when a scalar field, 

called the inflaton (a.nd different from $I), is displaced from the zero-energy minimum of its 

potential and ‘slowly’ evolves to this minimum. During inflation ptor is dominated by the 

potential energy of the inflaton and is a,pprosima,tely constant: ptO, N p0 E M4 where M 

is the energy scale for the inflaton potential. It follows that during inflation, the Universe 

is in a nearly de Sitter phase (dS). In order for inflation to solve the usual horizon and 

flatness problems, (L must grow by at least a factor of O(e6’). After infla.tion follows the 

epoch of reheating (RH) during which the energy density is domina,ted by the coherent 

oscillations of the inflaton field (equivalently, non-relativistic inflatons) and plO< 0: a-‘. 

During RH, the tempera,ture T (- pi;“, where p:!“, is the energy density in relativistic 

particles produced by the deca,y of the coherent oscilla,tions) rises quickly (in a Hubble time) 

to (TRHM)‘/’ and then decrmses to TRH. The temperature reaches TRJJ(E (%+,r)‘/2), 

when the age of the Universe N I?’ (I? = decay width of the inflaton). At this time 

ptot N prad and the energy density in t,he coherent. oscillations (infla.ton pa,rticles) begins 

to decrease exponentially13. Following RH come the usual radia,tion-dominated (RD) and 

4 



matter-dominated (MD) phases of the standard big bang model with Teq =~ 6h’eV being 

the temperature at the epoch of equal matter and radiation. 

In constructing an acceptable inflationary scenario, it is important to keep in mind two 

basic constraints to M and TRH. First, graviton production imposes t.he constraint that 

p0 = M4 < lo-sm,r or equivalently H,/m,r < 10e4 where Ho N M’/m,, is the Hubble 

parameter during inflationg. Gravitons are produced during inflation and those modes 

just entering the horizon today lead to large angular scale (quadrupole) distortions in the 

microwave background. The above constraint follows from the requirement that these 

distortions be consistent with present limits to the microwave isotropy14. We must also 

ensure that the Universe is radiation dominated by the epoch of primordial nucleosynthesis 

so that the successful predictions of nucleosynthesis are not spoiled and we therefore require 

that A!f> TRH 2 1GeV. Baryogenesis almost certainly provides a much more stringent 

constraint to TRH; however, the details of baryogenesis in inflationary models are far from 

being settled. Furthermore, the most stringent constra,int to inflatiorary models is that 

from adiabatic density perturbations; however, this constraint does not ea,sily translate 

into a simple constraint to M. TRH. 

In Table I, we give the scale fa,ctor and scalar curvature in terms of the conformal 

time n for ea,ch pha,se in the history of the Universe. Note that in using the expressions 

for (1 = n(n) in Table I care must be ta,ken in joining one phase to the nest. One must 

require that n and its first deriva,tive be continuous. However, it, is not necessary to have 

11 continuous (if ca,re is taken) and it is simpler not to require that 11 be continuous. 

In this pa.per. we calculate the energy density today in non-relat,ivistic o pxticles which 

have t,heir origin a,s quantum fluctuat,ions during an inflat,iona,ry pha,se. Our stx-ting point 

is to write 0 as t,he sum over Fourier modes ea,ch labeled by its comoving wavelength X 

a,ncl comoving wavenumber f; E 27/X: d(<, t) = s d3kei”” $k( t). The equation of motion 

for C;r is 

4,: + 3;& + (k/a)‘Qn + m’& + <Rc$k = 0 (2.4~) 

or equivalently, 

cd;’ + (k2 + aW) Yk + (6 - l/G) O?&~~ = 0 (2.4b) 

where wk = a+k. 

A given mode is initia,lly excited when it is well inside the horizon (crX < H-’ or k > 

aH) during the de Sitter epoch of inflation. It is well known that in de Sitter spa,ce, there 

are fluct,uations in a massless, minima~lly-coupled sca,la,r field such tha,t a, conloving observer 

det,ects a, therms.1 bath of &particles with the Gibbons-Hawking t.cmperature. Ho/% 15. 

This implies t,ha.t at first, horizon crossing, pd( k = aH)/ptot E ( H/mpl)’ N (M/m,,l)” 

n-here pd,(I;) zz i;dp,/tlb, is t,h e energy densit,y in the kth mode. Since pd,(k.) cz P~c$~/‘/cL’ 
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it follows that at first horizon crossing Idk 1’ N Hi/k3. Furthermore, Bunch and Davis’s 

have shown that a massless, conformally-coupled scalar field will have fluctuations with a 

stress energy density that is de Sitter invariant (and hence non-thermal) and is of order 

Hi. We therefore make the seemingly reasonable assumption that at first horizon crossing, 

iq(k)lm = H4 and [+k[’ 1: Hz/k3 for any scalar field satisfying m < H,, regardless of 

the value oft. 

A fluctuation mode crosses outside the horizon (first horizon crossing) during infiation 

and crosses back inside the horizon (second horizon crossing) during either RI-I, RD, or MD. 

The scale factors at first and second horizon crossing are labeled a1 and o2 respectively. 

It is useful at this point to refer to Fig. 1. Shown are the horizon size, H-‘, the physical 

wavelength of a given mode, a(t)X N a(t)/k, and the Compton wavelength of the 4- 

particle, m-l. One should keep in mind that ul(= H(a,)/k), a~(= H(az)/k) and the value 

of the scale factor when (the Compton wavelength) N ( wavelength of the fluctuations), 

LZNR N k/m, are fixed by the choice of LZ and in fact each could equally well serve to 

label any given mode. Furthermore, there is one particular mode such that a2 = ~,vR, 

i.e., equality of the Compton wavelength, mode wavelength, and horizon at second horizon 

crossing. We label the scale factor at second horizon crossing for this mode by a.. More 

precisely, a, is defined by the relation 3H(a,) = m. 

Once outside the horizon, we assume that the fluctuation behaves classically i.e., obeys 

its classical equations of motion, Eqns. (2.4). By comparing the three scales displayed in 

Fig. l1 one can determine which of the terms in Eqns(2.4) are dominant. In particular, 

once the Compton wavelength has entered the horizon (m > H) and n2-l < a/k [i.e., 

a > a, = min(a,, k/m)] d will b h e ave as non-relativistic matter. This can be shown 

explicitly by studying the equations of motion. Substituting dk = .4ke’*’ into Eqn.(2.4a,) 

and neglecting the I? term> one finds 

Ak + 3i& + im 
( 

2i,: + 3Z.& 
> 

= () 

which, for m > 3H - t-l, gives & K (1 -‘/’ and dpc cx lile/* cx am3. [Note that for 

m < 3H, there are two solutions: ill; 0: cons’t and ilk 3: a-“.] For a > a,, the energy 

density (= mass x number density) per comoving volume is conserved and it is therefore 

convenient to compa.re the differential energy density in the kth mode dp~ to the entropy 

density, s (= 4p,,d/3T where prnd is aga,in the energy density in relativistic matter): 

&Q = “f-’ T,,, *I 
s a=am 4’ 

(2.6) 
Ptm ~~=~n, 

where T, = T(n,) and .f G pmd/ptor is the fract,ion of the t,otal energy density con- 

tained in mdiation. T,,,, the t,empera,ture a.t which any @ particles created behave as 
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non-relativistic matter, can occur during RH, RD, or MD and each of these cases must be 

treated separately. 

In RD, f is 1 (by definition) while in MD, f = Tm/Teq. During RD and MD in the 

standard big bang cosmology, the expansion of the Universe is adiabatic and therefore 

dpk/s is constant so that dpk/sI,=,, = dp~/Sjta,jny. If there is entropy production during 

either RD or MD then dpk/sltoday = dpk/sl,=amP-l, where P is the factor by which the 

entropy per comoving volume .sa3 has changed since T = Z’,,,. When T, occurs during 

RH, both the d-field and the coherent oscillations of the in&ton behave as massive, non- 

relativistic matter (dpk and p 1~ p,,ac are both cx a-“). Therefore, 

h - N 
TRH gy.=.,, = TRff $jaz. s Cl=aRH m 

The above results can be summarized as follows: 

where 

dPk dPk - =- 2-m G 

PC today Plot a=arn PC/.% 

(2.7) 

(2.8) 

The critical density is pC = 1.05 x lo4 il’ eV cmm3 and the entropy density today is 

so = 2810 T;.; cn~-~, where T = 2.7”Ii T2.i is the present temperature of the microwave 

background. The three cases given in Eqn (2.9) correspond to T, occurring during RH, 

RD, and MD as indicated. 

To complete the calculation, we must determine dp~/p,,,l,=,_ and then integrate 

over k. As we shall see, the qua.ntit!; dp~/pt,tl,,=,m is very sensitive t,o the value of <. 

Furthermore. we will show that the integral is dominated by fluctuations cemered around 

the pa,rticula,r mode whic~h enters the horizon just as the mass term begins to dominate 

the 1;' tenll, i.e., the mode such that. (~2 = cl,?, G cl., is sa,tisfied. 

III. Conformally and Minimally Coupled Scalar Field 

We now consider two pa,rticula.r choices for [: conformal coupling (< = l/6) and 

minimal coupling ([ = 0). For < = l/G and mZ < (k/a)‘> the solutions to Eqn.(2,4b) 

are wk = a4r; CC e*ikq and it, follows that dp, N I$r.]*/,’ cx a?. These are the expected 

results: First, for a, conformally coupled field (in the present example, t,he [ = l/G scalar 

field) in a conforma,lly flat spxetime (here, a,n FRW spacetime), the solution t,o the wa,w 

equation is just rhe ~Iinltowski spxe solution multiplied by a conformal weight. For the 

< = l/6 scs~lar field the conforms,1 weight is n-l. Furthermore. the energ!- density for a, 

conformal field in a,n FRW spxetime always scales as n-‘. 



With the above result, we can readily calculate dpk/pt,, at a = a, for a, occurring 

during either RH, RD, or MD: 

dPk - 
Ptot a=&, 

(TWRHM)4’3 RH 

(TRH/M)"'~ 

(TRH/M)"~ (Tm/Teq) E 

(3.1) 

where N(= N(X) = 45 + ln(X/Mpc) + 2/31n(M/10i4GeV) + 1/31n(T~~/10n’GeV)) is 

the number of e-folds the Universe expands between first horizon crossing and the end of 

inflation. In the above expression, X = X~~&fpc 11 l/k is the comoving wavelength of a 

given scale and is related to the temperature at second horizon crossing for that scale, Ts: 

TdX) = 73 eV/AMpc X 5 12h-?Mpc 
860 h-%‘/A&, X > 12h-ZMpc. (3.2) 

From Eqn. 3.1, it is clear that the contribution to the energy density of the Universe from 

these particles is negligible. 

Nest, consider the minimally coupled scalar field. First, we show that dpk/pt,,, at 

second horizon crossing is the same as it is at first horizon crossing provided that the 

Compton wavelength of 4 remains greater than the horizon until second horizon crossing. 

For H > m and H > k/a, Eqn. (2.4b) becomes 

in dS, RH, or MD 
in RD 

The genera,1 solutions are 

Sa + TcI-~ in dS 

WI; = Ua + Vu-‘/’ in RH and MD 
Wa+S in RD with I; > mc~ 
Yn + za-2 in RD with k. < nre 

(3.3) 

(3.4) 

where S through Z are constants. [For the last of these results, see t,he comment which 

follows Eqn. (2.5).] At first horizon crossing, S a.nd T a,re comparable. However, once a 

fluctuation crosses’outside the horizon, jkvl = k/aH, < 1, so that WI. ,,= Se, 4r; N cons’t 

and therefore during dS (and after first horizon cro&ing)l ~~ N H,/k3/‘. Since the solutions 

in each of the subsequent phases has a part with WI; cx (1 or equivalently dn o( co&t it easy 

to match solutions from one phase to the next. [The decaying mode solution decreases 

with time and thus can be neglected.] Therefore, as long a,s o/k > H-’ and nz-’ > H-l, 

dk N H,lk3/’ cx cons’t and dpk cx a-’ or equivalently 

hk -I plot 0,=“2 = $yaEa, (2)’ (;:::;::;) 
S 

(3.5) 



From the relations H(al) = k/al and H(az) = k/a2 it follows that 

and therefore 

H(a2) - = 

H(~I 1 

4% - 
Ptor a=a2 = El.=., = (Eg 

(3.6) 

(3.7) 

regardless of whether second horizon crossing occurs during RH, RD, or MD. 

We note that the equation of motion for gravitons, the tensor perturbations of grv, is 

the same as that for a minimally-coupled scalar field. The fact that the energy density 

of a given mode for the graviton field, as well as for the minimally-coupled scalar field, 

decreases or!‘;- as am2 as compared with uV4 for a conformally-coupled field is known as 

‘supemdiabatic amplification’. 

[The graviton constraint discussed earlier is easily derived using the results of this 

section. Fluctuations in the microwave temperature, ST/T, are approximately equal to 

the amplitude of metric fluctuations. The metric fluctuations are O(H,/mpl) at first 

horizon crossing a,nd, as in the case of the minimally-coupled scalar field, are O(H,/m,l) 

at second horizon crossing. Modes just entering the horizon today give rise to large scale 

(e.g., quadrupole) distortions in the microwave background temperature with &T/T = 

O(H,/m,l) and the requirement that these distortions be consistent with present limits 

on the microwave isotropy leads to the constraint : H, 2: 10-“mp, g’14.] 

Let us rewrite Eqm(3.S) in the following form: 

4-Q 
PC today 

(3.3) 

where d~~,l~t~&=~, = FhlptotI,=,, and G is given by Eqm(2.9). We now discuss the 

quantity F. Consider, for example, modes which have both second horizon crossing and 

am during RD. For those modes where n? < CL, (labeled XB in Fig. l), we see that after 

a~ but before CI,, 4 0: l/a (Eqn. (2.4b) d ominated by k’ term) and pk cx CL-~, For these 

modes: dpk/ptot is constant after second horizon crossing. Since dpk/pt,,t is the same at 

second horizon crossing as it is at first horizon crossing, F is simply 1. For modes with 

CQ > u, (labeled AA in Fig. l), dpi;/plotlncaz = dpk/pt,,l.=,,, (a*/a?)’ a,nd F = (a*/~~~)~. 

In Table II we give the values of F for the various possibilities. 

From Eqn. (3.S), we calculate the energy densit,y t,oda>- in &parbicles: pQ = J dpk, as 

well as f12, e p+;lpc. While it is ra,ther difficult and cumbersome t,o display results for Q, 
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in the most general case, specific examples are easy to work out. Consider the case where 

a, occurs during RD. We first calculate the contribution to R+ from modes such that both 

a2 and a, occur during RD. The integral is broken into two parts: 

n+ = ($)2-& [~;~;za*,~g + f-==-; ($)‘gF] . (3.9) 
where kmin = min(k(a, = neg), k(az = URH)). [kmin is defined as such to insure that both 

second horizon crossing and a, occur during RD for all modes included in the integral.] 

The first (second) integral gives the contribution from modes with a2 < a, (a2 > a,). 

Using the relations a, cx k and a2 K k-’ (for a2 occurring during RD), we fmd that 

Q=(+J$[g - ;(gg2 - maz(& 2)]. (3.10) 

The contributions from modes which have a = k/m during MD or have second horizon 

crossing during either RH or MD will introduce corrections of the order T,JT, a,nd T*/TRH 

and for the case at hand (i.e., TRH 2 T, 2 Teq) these contributions are at most of order 

unity. We obtain then. a,s an estimate for R,: 

The dominant contribution to the energy density in this example comes from those 

fluctuation modes which have a2 N a.. This is also true when a. occurs during RH or 

MD as can be seen by inspection of Table II a,nd Eqn.(3.7) which shows that, the integrand 

needed to compute 9, is maximal when 02 = (I, = n,. It is easy to check tha,t the result 

of the integration in &her of these two cases is well spprosima,ted by simply evaluating 

the integrand a,t (~2 = (L,, = CL.. 

To summarize the results for the three cases where T. occurs during either RH, RD, 

or MD we write: 

Q=($y(&){y !g 
(3.12) 

The expression 112 = 3H(T,) = (4~~g,(T,)/5)~/~T:/ mpl can be used to rela,te T, to the 

mass of the $-particle: 

T, N 1.6 x 10” Gel’ y;“4(T,)(nz/GeV)‘l’ (3.13) 

Eqn. (3.12) for the energy density in +pa,rticles today can then be rewritten as 

3 5 x lO’*T -. m > 40 Gel,. .(I:‘~(T~~)T$ 
3.9 x 10+‘(3:. )(n~~,Gel:~)~/~ 40 GeTI. y:‘2(TRH)T;u 2 m 

1 ..5 
(3.120) 
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where TRH = T1010” GeV. Note that for m 5 3 x 10m3s GeV, T, is less than Teq(l: GeV), 

and R+ 5 (Ho/mp,)2 2 10-s is probably uninterestingly small. 

Now consider the possibility that 4 particles created during inflation as desitter space 

QM fluctuations might provide closure density today. For m 2 40GeV ~:“(TRH)T& (i.e., 

corresponding to T, 2 TRH), this requires that 

R, II 2.5 x 10’8TIo(H,/m,,)2 N 1, 

TRH N 0.4GeV[(m,,/Ho)/10”]‘. (3.14a) 

For scalar particle masses in the range: 3 x lo-s5GeV 5 m 5 40GeT/g~‘2(T~~)Tr$, (i.e., 

corresponding to: TRH > T, > 6eV), this requires that: 

il# E 3.9 x 10”y-“4 . (T*)(m/GeV)“‘(H,/In,r)? N I 

: or 

m/GeV N 6.6 x 10-2”~:“(T~)[(m,~/H,,)/104]4. (3.146) 

Conversely, the existence of a minimally-coupled scalar particle places constraints on 

the value of the Hubble constant during inflation to ensure that R,++ < 1: 

“-<{ 6.3 x 10-‘“T-“2 m 2 ~OGEV~:‘~(T~~,)T~~ 

mp1 - 1.6 x 10-“ill’a0(T.)(m,GcV~-‘/4 m 5 40Geb’g:‘*(T~~)T:, 
(3.15) 

In principle this constraint to H,/mpl can be more stringent than tha,t from graviton 

production. 

IV. Arbitrary Coupling to Gravity 

In this section. we consider the case where [ is arbitrary. ils before, a,n estimate of 

0, is calculated by considering the contribution from the mode which has second horizon 

crossing when (L = (1.. For modes outside the horizon a,nd still ma,ssless, Eqn. (2.41,) reads 

u;( = 
1 

2(1 - 6+~/77* in dS. RH, MD 
-( k2 + a2m2)wI; in RD 

The solutions a.re easily found and the results for q3r; in terms of 4, are: 

i 

Aa,(O-3)/2 + B&0+3)/2 in dS 

ci5k = CQ(“-~)/“ + Da-(“+3)/” in RH, LID 
E+ Fa-’ in RD with 1; > one 
G + Ha? in RD n-it11 nr(~ > k 
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where D = 1 + 8(1 - Se). As before, at first horizon crossing, the amplitude of $k is 

N H,ke312. At the end of dS, dt N H,k-3/2eN(“-3)f2. B y matching this to the solution 

in RH we find: 

4t N 
,Hoe;;;;3)/2 (3(u; 1) (aj’-‘“’ + $ (cx) -‘“+3i’4) (4.3) 

where a, is the scale factor at the end of inflation. Note that for t + l/6, 0 + 1 and 

the first term will vanish. In this limit, one recovers the result for the conformally-coupled 

field. Since this case leads to only negligible energy density in $-particles, we wilI not 

consider it further. For (c~~/a)~” >> u - 1 we can neglect the second term. During RD 

(but with k > m/a): 

4k 5 
Hoe.%-3)/* 

TRH 

p/2 c-1 
(3-)/3 3(c - 1) 

M scr 
o+1-(a-3) (4.4) 

Ignoring the second term, we find that 

3(~’ - 1) e~(m--3),z 
(3-0)/3 

dk = so (4.5) 

which is constant. 

Consider the two cases where (1, occurs during RH or RD. One has that 

4% I I = 4% 3(0 - l),p(o-3)/2 4 (TJ/TRHM)(~-~“~ RH 
(4.6) 

n=o. “=a, SO (o + 1) (TRH/M)‘~-““~ RD 

so that 

16 (CITRHW 
2(3-s)/3 

RH 

(U + l)* (TRH/AJ)“~-““~ RD 
(4.7) 

,V must be evalua,ted for the particular mode which has (~2 = a, and we find that 

eN = (MTRH/T)“” RH 

(M/TRH)*‘~ (TRH/Q”*) RD 
(4.8) 

Using this, we can rewrite Eqn. (4.7): 

Q,(,c) = Q,(E = o) x ‘(;q,;)* 
1 4(0--3)/3 

16 (A~TRH/TC) 
(U + 1)’ (AW/T~~)4(c--3)‘3 (TRH/T*)‘“-~’ 

RH (4.9) 
RD. 

Eqns. (4.6-4.9) clexly show that for [ < 0 (a > 3): C;k grows while outside the horizon. 

i.e., dpr, decreases more slowly tha,n (I-~- and nd is erkuced over t,he : = 0 ralue. Given 
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M, TRH, t, and m, one can compute R+. Alternatively, given three of these quantities, 

one can use Eqn. (4.9) to place constraints on the fourth by requiring that Rg not be 

greater than 1. 

Physically, the growth in #k while outside the horizon arises because, for 5 < l/6, 4k 

has a negative effective mass squared and this indicates an instability. One might expect 

that interaction terms (e.g., a 44 term) would halt the growth of 4k but we have not 

considered these terms. Furthermore, for < < 0 there may be important backreaction 

effects during inflation. Ford , I7 for example, finds that in a Universe with a cosmological 

constant and a scalar field with s < 0, the late time behavior of the system has I$ K t and 

a cx t” where o z (2/<1 + 1)/41[1, i.e., th e energy density in the scalar field cancels the 

cosmological constant with the residual energy density leading to power-law expansion. 

We will not discuss backreaction effects further except to note that as found by Ford”, 

it is possible, under certain conditions, to have a scalar field with [ < 0 without affecting 

inflation. 

V. Axions 

We now apply the result,s of the previous section to an interesting a,nd very topi- 

cal example: the axion. The a,xion is the (pseudo-) Nambu-Goldstone boson associated 

with spontaneous breaking of the Peccei-Quinn (PQ) global U(l)pq symmetry. Sym- 

metry breaking occurs ant a,n energy scale ,f~. .4t the QCD transition (energy sca,le 

A = ZOOMeVh2oo) instanton effects, which also break U(l)pq, become important and 

the a,xion becomes massive. The mass is temperature and therefore time-depenclent. As 

will be shown below, we must modify the zmalysis of the previous section in order to ta,ke 

into account the specia,l properties of the a,xion field. Before doing so, we review the gen- 

eral properties of axions relevant to the present discussion as well as the previous work on 

cosmological production of a,xions. 

Let 6 = $eie be the complex scalar field responsible for breaking the u(l)pQ symmetry. 

Spontaneous symmetry breaking occurs when J acquires a vacuum expectation value: 

< 161 > = < 4 > = .fA. The Nambu-Goldstone boson associated with the ti degree of 

freedom is labeled the asion, -1 = ,fA0. Initially, the potential for B is flat and the a,sion 

is massless. At a t,empera.ture of order A, QCD inst,anton effects induce :‘~r degenerat,e 

minima. in the potential for 0 and consequently, the asion develops a mass. .\I is a positive 

integer whose v&e depends on the C( 1) pQ cha,rges of the quarks (a,nd any ot,her pa,rticles 

which carry color) a,nd. in the simplest, models M = 6. The L agrangian for rhe arion field 
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= -$ (a,we + 
(5.1) 

mf,,(T)L” + [R@) 

where we have neglected the coupling of the &on to other fields (e.g., photons, fermions). 

[These couplings, though very important for axion detection and for understanding how 

axions may affect stellar evolution, can be for our purposes ignored.] The equation of 

motion for the kth Fourier component of A is 

& + 3;.& + SAL + m;(T)Al, = 0. (5.2) 

rn~ is the temperature-dependent axion mass with ma(T) + 0 for T + 00 and nz~(T) -+ 

nz~ = 3.7(M/6) x 10-5eV(10’3GeV/f~) for T + 0. We will need an explicit formula for 

the axion mass as a function of temperature and we use the results of Gross, Pisarski, and 

Yafk Is. They calculate the mass of the axion using the dilute-instrmton gas approximation 

and find 
PA = B (II/T)~ T < B’IPh s To 

mA { 1 T > To (5.3) 

where B = 7.7 x 10-2*o.6 , p = 3.7 f 0.1, and To is the temperature at which the mass 

achieves its zero temperature value. 

Let us briefly review the usual mechanism thought responsible for the cosmological 

production of asions’ssO. At the QCD transition, 0 N 81 N con,c’t within a horizon 

volume, the higher momentum modes having been redshifted away. If inflation occurred 

beforehand, then 6’ will be constant in a region corresponding to the presently-observable 

Universe. However in general, 81 will not, correspond to a minimum in the potential for 8. 

6 remains constant as long as the Compton wavelength of the &on is outside the horizon 

(ma < 3H). Once ,n~ > 3H, 0 will oscillate about a minimum of its potential and these 

coherent, oscillations correspond to a condensate of non-rela,tivistic axions. The energy 

density in axions due to this effect depends on 8,, the finite temperature beha%r of the 

axion ma,ss: a,nd the scale of the PQ symmet,ry bre&ing,.f.~: or equivalently 171~. One finds 

thatso 

R, = 0.23 & (bW2 ( l,‘:;~v)“‘8 (5.4) 

where we have assumed tha,t f~ 5 10’8Gr17. 

Se&e1 and Turner ’ have studied de Sit,ter space fluctuations in t,he &on field. These 

fluctuations lea~d t,o fluctua.tions in t,he initial misalignments angle and therefore t,o fluc- 

tua,tions in the density of a~xions produced. They are in fa,ct, fluctua,tions in the axion 
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to photon ratio or isothermal density inhomogeneities. Seckel and Turner argue that this 

effect may be important in galaxy formation. 

Along very different lines, Turner *’ has discussed the thermal production of axions 

in the early Universe via Primakoff and photoproduction processes. He finds that, for 

f~ 5 2 x 1O’GeV (mu 1 3 x lo-‘eV), thermal production dominates over production 

due to coherent oscillations. The results for production due to both thermal effects and 

coherent oscillations are displayed in Fig. 2. 

We now calculate the energy density in axions which originate as QM fluctuations 

during inflation. It is important to keep in mind that the axion field A, is the Nambu- 

Goldstone boson associated with the angular degree of freedom of Jonce U(l)pq is broken 

and therefore A cannot have fluctuations greater than O(~.J). In what follows, we will 

assume that ,fA 2 H, so that U(1) PQ is broken during inflation and the axion can be 

considered a fundamental scalar field during this epoch. 

Let us first consider the case where the axion is minimally coupled (t = 0). The scales 

H-1, rn,~(T)-I, and aX 21 a/l; for the axion case are shown in Fig. 3. From the relation 

mil(T,) N 3H(T,) = 5g~‘2(T,)(T,/A)2A2/mp,, it follows that 

T* Il(2+P) 
-= 
A (5.5) 

= 4.7 x (m-~/A~00)0~18 

where mA = 10m5 x m-,eV. For mA(T) > 3H and rn.~(T) > k/a (i.e., a > a, s 

min[a,, k/m]), m~(T)jA~~’ cx dp, K ue3 where (L, E U( T.)). This result, first obtained in 

the original work on the cosmological production of axiom’“, ca,n be seen directly from the 

equation of motion by making the subst,itution AL = Ak cos na.aT and using the fact that 

liz~/m.d N p/t N H < m,~. One obta.ins d(mAd~)/dt + 3H(mAdi) = 0 and the a,bove 

result, follows immediately. 

Let us first consider only those modes which have both second horizon crossing and T,,, 

during RD. For these modes 

4% - 

PC today 
(5.5) 

where, for simplicity, we a,ssume tha,t there is no entropy product,ion during either RD or 

MD. In calculating dp~/p,,,l,,,_ we note that there a,re three t,ypes of fluctua,tion modes 

to consider. First, there a,re modes with (I? > CL,,, (labeled XC in Fig. 3) so tha,t a, = a, 

and 4~/~t~tl-,,, = dpk/ptoll.=,, (o*/~?)‘. Kest, there a.re modes which become massive 

aft,er second horizon crossing but before t,he mass rea,ches it,s zero tempera,ture value a.t T, 

(labeled X0 in Fig. 3). For these modes. C,~,~ = /C/WA = (lz/nz.~)( T,,,/A)‘. Finally, there 
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are modes which become massive after T, (labeled XE in Fig. 3) and for these, a, = k/mA. 

For these last two cases, dpk/piotlaza, = d~k/~~,,~l~=~,. The contribution to 0~ from the 

modes discussed above is given by 

fiA = ($J’$J~;:,::;: (:)‘T + 

J 

k(%“=..) T & 

J 
bnin 

A- + T,,, dk 
(5.6) 

-- 
k(o,=a.) 2-e k k(a,=a,) T* k 1 

where a(T,) s a, and again, k,i” = min[k(a, = a,,),k(az = ~RH)]. The first and last 

integrals are just the ones encountered in the of minimal coupling case. For the second 

integral, we use the fact that k cx Tic’+‘) so that dk/k = -(l +p)dT,/T,,,. The fma.1 

result is 

OA = (Z)$- [: + p - pz - ~($$-ma.(~. $)I 
N 109 gi (EJ (y+*’ (5.7) 

-4s before, the energy density is dominated by those modes just enkring t,he horizon a.s 

the Compton wavelength enters the horizon and by including the contributions from the 

full spectrum of modes the above result will not change in any substant~ial way 

It follows. from the wsumption that f,~ 5 H,, and from the relation m-5 = 4 x 

1O”&\,‘/fA that 

T& fA 1’82 
fi,z, 5 i x 10’ - - 

( > h2A;;o mp, (5.S) 

where the equa,lity holds for ,fA = Ho. In Fig. 2 this result (with .f.~ = H,) together with 

the results for xion production due t,o the two aforementioned mechanisms ue plotted. 

In choosing .t~ = H, we are in fact plotting a,n upper limit to RA for xions produced by 

this mechanism. Evidently, for the minimally-coupled asion, the energy density in asions 

arising from quantum fluctuations during inflation is always subdominant,. 

The situation is quite different for < < 0. For [ # 0 we can use Eqn. (4.9) to determine 

how to modify Eqn. (5,s). For E < O> 0 > 3 and the density in axions is greatly enhanced. 

The results for 0~ with [ = -0.033 a,nd [ = -0.06s (u = 3.75 and 0 = 3.5 respectively) 

a,re shown in Fig. 2. [Again. we take .f~ = H, and also, for simplicity, choose hl = TRH.] 

Clearly, t,he energy density in axiom from desitter-induced fluctua,tiolls can be importa,nt 

for < 5 -0.033. 



VI. Conclusion 

We have studied the production of scalar particles in inflationary Universe models. De 

Sitter space-induced fluctuations in a scalar field cross outside the horizon during inflation 

and then evolve classically. Ultimately, the fluctuations behave as non-relativistic particles 

and may significantly contribute to the energy density of the Universe. 

The evolution of a scalar field while outside the horizon depends crucially on the 

coupling of the field to gravity. In particular, the coupling constant t determines the 

power-law dependence of the field on the scale factor so that small changes in < will 

change PQ by many orders of magnitude. The dominant contribution to the energy density 

in $-particles from this mechanism comes from modes which reenter the horizon just as 

the Compton wavelength of the d-particles is entering the horizon. For a given inflationary 

Universe model? 5 and m determine P+. 

While virtually all Grand Unified Theories predict the existence of fundamental scalar 

particles, no such particles have yet been observed. Furthermore, the currently popular 

quantum theories of gravity (e.g., supergravity, superstrings) have not (to the best of our 

lmowledge) directly addressed the question of the coupling of scalar particles to gravity. 

We hope that this work will generate interest along these lines. 

In summary, our results depend on many unlmowns. First, one must determine the 

energy scales for inflation and reheating , A4 and TRH (if indeed inflation did ever oc- 

cur). Next, one must know the couplings to gravity a,s well as the masses of fundamental 

scalar particles (if such particles exist at all). In addition. one would have to address the 

question of whether or not the $-particles once produced might therms&e (through their 

interaction with other particles), thereby ultimately reducing their final abundance. [The 

equilibrium number density of a massive particle is ~EQ N (mT/3i;)3/2e~p-m/T.] IVe have 

shown here that for a large class of inflationary models and for a wide range of masses 

for nonconformally-coupled scalar fields, quantum fluctuations in the early Universe can 

produce a significa.nt and potentially interesting number of SC&~ particles. 
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Figure Captions 

Fig. 1 - Summary of the evolution of two representative modes with comoving wavelengths 

AA and Xg. The Universe is assumed to evolve through four phases: inflation, reheating 

(RH), radiation domination (RD), and matter domination (MD). The Hubble radius, H-’ 

is cx cons’t (inflation), u3/s (RH), a2 (RD), and a3/* (MD). The Compton wavelength 

of the q5 particle, m -‘, is constant throughout and a, is defined by 3H(a,) = m. The 

physical wavelengths (either a(t or a(t) begin subhorizon-sized, cross outside the 

horizon during inf?ation (c = al), and thereafter evolve as classical fluctuations. Second 

horizon crossing occurs at a = az. The fluctuation behaves as non-relativistic matter 

(P k oc a-“) once a > a, where a, = min(u,, k/m). For AA, a, < a2 and a, = a, while 

for Xe, a, > ~12 and a, = k/m. Gravitational production of 4 particles is dominated by 

the modes for which as N n,. This mode (not shown) lies between modes A a,nd B. 

Fig. 2 - Schematic summary of cosmological production mechanisms for zions. We plot 

fiA = PA/p= as a function of the PQ symmetry breaking scale .fA (or axion mass). Co- 

herent production of asions resulting from an initial misalignment of the axion field is 

labeled ‘coherent’ (ref. 19, 20). Thermal production of axions (Prima,koff a,nd photopro- 

duction processes) is labeled ‘thermal”‘. Gravitationally produced axiom (considered in 

the present work) are shown for < = (0, -0.033. -0.06s). We have set H, = .fA so that 

these results should be considered upper limits for this production mechanism. 

Fig. 3 - Summary of the evolution of three representative modes with wavelengths Xc, XD, 

and XE for the a,xion, as in Fig. 1. Here, the a.sion mass and therefore the Compton 

wavelength for the axion? ~J?A(T)- ‘, is temperature-dependent. As before. IX, is defined 

by 3H(a,) = ma(T,) and CL,, is the SC& fxtor when the asiou mass rea,ches its zero 

temperature value. For Xc, (6,” < ((2 and CL,,, = a,. For XD a~nd XE, rr,, > (1s and 

a - k/naA(T,). For Xo, ~n.d(T,,) = m,~.(li/T,,~) 77- p while for XE, ma(T,) = VX.,J where m 4 

is the zero-temperature mass of the asion. Again> the dominant, contribution to the energy 

density in gravitationally produced asions comes from the mode for which (1s N a,. This 

mode (not shown) lies between modes C and D. 
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Table I - Expressions for the scale factor (a) and scalar curvature (R) for de Sitter 

(dS), reheating (RH), radiation-dominated (RD), and matter-dominated (MD) phases in 

an inflationary Universe model expressed in terms of the conformal time 17. In joining one 

phase to the next one must require that a and its first derivative be continuous. It is not 

necessary that 7 be continuous. 

Table I 

dS ) RH ( 1 

I = I -l/Ha I An* 1 Bn 

Table II - Expressions for F = (dp~lp~otlo=a,) l(+~;lptotla=,,) with a~ and G,, = 
m.in(k/m,a,) occurring during the epochs of reheating (RH), radiation domination (RD), 

or matter domination (MD). For the cases where both a2 and a, occur during the same 

epoch; the first entry is for a, > a2 and the second entry is for a2 > a,. For example, for 

both a2 and a, occurring during RD and ti2 > cc,,,, F = (a,/~)~. Note that F is maximal 

for a2 = a, = =,, 

u? in RH 

Table II 

RD MD 

a, in RH (a2/G7) (a*/a2) (~,I~RH)C~RH/~~)~ (~./~RH)(~RHIQ,~)~(~,,/~~) 

RD (UZ/~RH) 1 (=*/=2)2 (~*l%)2(%ql~2) 

MD (~2/fi~~)(+/a,) (=e,l=nl) (~ZlG,) (a*/cc2) 
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